GausPcc: A Novel Benchmark and Dataset for Efficient 3D Gaussian Splatting with Gaussian Point Cloud Compression

1Peking University, 2PengCheng Laboratory

Abstract

Recently, immersive media and autonomous driving applications have significantly advanced through 3D Gaussian Splatting (3DGS), which offers high-fidelity rendering and computational efficiency. Despite these advantages, 3DGS as a display-oriented representation requires substantial storage due to its numerous Gaussian attributes. Current compression methods have shown promising results but typically neglect the compression of Gaussian spatial positions, creating unnecessary bitstream overhead.

We conceptualize Gaussian primitives as point clouds and propose leveraging point cloud compression techniques for more effective storage. AI-based point cloud compression demonstrates superior performance and faster inference compared to MPEG Geometry-based Point Cloud Compression (G-PCC). However, direct application of existing models to Gaussian compression may yield suboptimal results, as Gaussian point clouds tend to exhibit globally sparse yet locally dense geometric distributions that differ from conventional point cloud characteristics.

To address these challenges, we introduce GausPcgc for Gaussian point cloud geometry compression along with a specialized training dataset GausPcc-1K. Our work pioneers the integration of AI-based point cloud compression into Gaussian compression pipelines, achieving superior compression ratios. The framework complements existing Gaussian compression methods while delivering significant performance improvements. All code, data, and pre-trained models will be publicly released to facilitate further research advances in this field.

Project Overview

Project Overview

Overview of our GausPcc-1K dataset and GausPcgc framework. Existing methods neglect Gaussian positions or use suboptimal G-PCC resulting in bitstream inefficiency. GausPcgc trained on our specialized dataset achieves superior inference speed and compression rates.

GausPCC-1K Dataset

GausPCC-1K Dataset

Experimental Results

Performance Comparison

Performance comparison across different datasets and methods, with the best and second-best results highlighted in red and yellow cells.
Mip-NeRF360 Tanks and Temples Deep Blending
PSNR↑ SSIM↑ LPIPS↓ Size↓ PSNR↑ SSIM↑ LPIPS↓ Size↓ PSNR↑ SSIM↑ LPIPS↓ Size↓
3DGS 27.46 0.812 0.222 750.9 23.69 0.844 0.178 431 29.42 0.899 0.247 663.9
Scaffold-GS 27.5 0.806 0.252 253.9 23.96 0.853 0.177 86.5 30.21 0.906 0.254 66
Compact3D 27.08 0.798 0.247 48.8 23.32 0.831 0.201 39.43 29.79 0.901 0.258 43.21
SOG 26.56 0.791 0.241 16.7 23.15 0.828 0.198 9.3 29.12 0.892 0.270 5.7
Compressed3D 26.98 0.801 0.238 28.8 23.32 0.832 0.194 17.28 29.38 0.898 0.253 25.3
RDOGaussian 27.05 0.802 0.239 23.5 23.34 0.835 0.195 12.03 29.63 0.902 0.252 18
ContextGS 27.62 0.808 0.237 12.7 24.20 0.852 0.184 7.05 30.11 0.907 0.265 3.45
CompGS 26.37 0.778 0.276 8.83 23.11 0.815 0.236 5.89 29.30 0.895 0.293 6.03
Reduced3DGS 27.19 0.807 0.230 29.54 23.57 0.840 0.188 14.00 29.63 0.902 0.249 18.00
LightGaussian 27.00 0.799 0.249 44.54 22.83 0.822 0.242 22.43 27.01 0.872 0.308 33.94
TC-GS 27.61 0.801 0.166 13.85 23.94 0.843 0.113 7.89 30.04 0.899 0.122 4.20
HAC (low) 27.55 0.807 0.239 15.23 24.29 0.850 0.185 8.06 30.06 0.907 0.267 4.31
HAC (high) 27.82 0.811 0.229 25.27 24.36 0.857 0.174 13.22 30.27 0.910 0.255 7.65
HAC++ (low) 27.54 0.802 0.253 8.37 24.30 0.850 0.189 5.17 30.13 0.907 0.265 2.89
HAC++ (high) 27.80 0.811 0.230 18.57 24.28 0.856 0.173 10.52 30.34 0.910 0.253 6.71
CAT-3DGS (low) 27.14 0.791 0.279 5.51 24.20 0.838 0.217 3.57 29.64 0.900 0.294 1.95
CAT-3DGS (high) 27.70 0.808 0.246 12.36 24.38 0.850 0.195 6.73 30.18 0.910 0.273 3.65
Ours-TC-GS 27.59 0.800 0.167 11.94 23.88 0.838 0.117 6.74 30.14 0.901 0.119 3.57
Ours-HAC (low) 27.54 0.807 0.239 12.48 24.23 0.849 0.187 6.53 30.11 0.906 0.266 3.56
Ours-HAC (high) 27.86 0.811 0.229 22.03 24.52 0.857 0.175 10.87 30.30 0.911 0.254 6.63
Ours-HAC++ (low) 27.58 0.803 0.252 8.18 24.18 0.848 0.189 5.22 30.17 0.907 0.266 2.83
Ours-HAC++ (high) 27.80 0.811 0.231 18.25 24.33 0.856 0.174 10.3 30.31 0.910 0.254 6.69
Ours-CAT (low) 27.13 0.790 0.281 4.33 24.12 0.836 0.219 2.87 29.81 0.900 0.294 1.56
Ours-CAT (high) 27.70 0.808 0.247 10.42 24.45 0.850 0.195 5.49 30.10 0.910 0.273 3.12

Rate-Distortion Curves

PSNR

PSNR RD Curves

LPIPS

LPIPS RD Curves

SSIM

SSIM RD Curves